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We present a simple mechanical model for dynamic wetting phenomena. Metallic balls spread along a
periodically corrugated surface simulating molecules of liquid advancing along a solid substrate. A vertical
stack of balls mimics a liquid droplet. Stochastic motion of the balls, driven by mechanical vibration of the
corrugated surface, induces diffusional motion. Simple theoretical estimates are introduced and agree with the
results of the analog experiments, with numerical simulation, and with experimental data for microscopic
spreading dynamics.@S1063-651X~96!04108-6#

PACS number~s!: 03.40.Gc

I. INTRODUCTION

Because of its practical applications in areas such as coat-
ing, lubrication, and adhesion, the old field of wetting phe-
nomena has recently attracted renewed interest@1–8#. Micro-
droplets that spontaneously spread along a solid surface have
a time-dependent shape that results from the balance between
liquid-solid interactions and friction processes@6#. Thus wet-
ting mechanisms are intimately connected with friction on a
molecular level@6,9,10# which is also important in the un-
derstanding of such practical problems as friction between
two solid surfaces separated by a thin liquid layer@2# and
dynamics of long polymer chains in random media@11#.

A salient feature of macroscopic spreading is that it is
often preceded by a microscopically thin film: a precursor.
The precursor film thickness may vary from molecular size
~one or sometimes several monolayers! to a few hundreds of
angstroms@12#. For nonvolatile liquids, well below their
critical temperature, thickness profiles with distinct succes-
sive molecular layers~terraces! have been observed@13,14#.
Ellipsometric measurements, carried out on different sub-
strates and also for various kinds of simple liquids, as well as
polymeric and surfactant melts, have reached a surprising
conclusion: the linear sizeR of the precursor obeys a univer-
sal law @13,15#

R}At, ~1!

t being the time. The same law holds also for capillary rise,
in which a vertical wall is put into a contact with a bath of
liquid. Here a film of microscopic thickness grows from the
macroscopic liquid meniscus and creeps upward along the
wall. In this case, the height of the film obeys theAt law
within an extended time domain@16,17#, until it gets trun-
cated, at very high altitudes, by gravity. A diffusionlike co-
efficientD1 can be formally defined as a prefactor in Eq.~1!,
which is found to scale as the inverse of the bulk viscosity.
Such a formal fitting does not, however, immediately imply

an understanding or even a model of the microscopic dynam-
ics responsible for the simple power law@7#.

Theoretical understanding of precursor dynamics has fol-
lowed from two major conceptualizations: the hydrodynamic
approach~HA! @18# and the solid on solid model~SOSM!
@19#, which is based on Langevin equations for layers in the
drop. Both approaches qualitatively describe the formation
of layered structures. The HA correctly describes long-term
kinetics of terraced spreading in two-dimensional~2D! sys-
tems with cylindrical symmetry; however, the SOSM pre-
dictsR}t rather thanAt. In both models the layers are con-
sidered as being incompressible continua. Neither model
assumes nor implies a microscopic model of the dynamics.
An analogy with the analysis of macroscopically thin layers
@8# and Ising-like models@3#, as well as the diffusionlike
structure of Eq.~1!, suggests that diffusion inside the precur-
sor layer plays an essential role for spreading dynamics.
However, consideration of the motion of a precursor edge
~PE! as a simple biased random walk is incorrect@8#. In the
presence of an external force~capillary force that pulls the
precursor out of the drop@7#!, the mean displacement of a
biased random walker~at the PE! is proportional to time in
violation of Eq.~1!, as is the prediction for the dynamics of
the first layer in the SOSM@20#. In the absence of external
forces the square root of the mean-square displacement
would exhibit the behavior of Eq.~1!. However, the mean PE
displacement would be zero, contrary to wetting experi-
ments, which indicate@7# a continuous directed displacement
of the PE with relatively small fluctuations. This differs
strongly from the fluctuation induced motion of a nonbiased
random walker, where the fluctuations are of the same order
as the typical displacement.

In @20,21# it was shown that the mean displacement of a
random walker that is biased by a uniform external force and
additionally experiences excluded volume repulsion exerted
by an ensemble of other, nonbiased, diffusing hard-core par-
ticles grows in proportion toAt, instead of the linear in time
growth expected for similar systems without the hard-core
repulsion. We also have shown in this model that excluded
volume effects imply an effectivefrictional force imposed
on the motion of an individual particle in the hydrodynamic
description.
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The goal of the present work is to investigate a simple
macroscopic spreading process with excluded volume. We
consider the spreading of metallic balls, with and without
magnetic interactions between the balls, and find that the
spreading of balls in one dimension belongs to the same
universality class as spreading of microscopic particles of
liquids, i.e., is governed by Eq.~1!. We present experimental
results for the spreading of macroscopic balls, which emerge
from a reservoir~vertical stack! and spread onto a horizontal
vibrating rack; see Fig. 1. The surface of the rack is uni-
formly corrugated to prevent rolling or ballistic motion of the
balls. Constraints enforce zero or unit occupancy of corru-
gated sites, creating a lattice system. Weak random driving
leads to alattice-gas-type behavior of the balls: random
jumps of length61 constrained by the excluded volume
effect. We find that this analog model yields theAt law for
the total number of balls that emerge from the reservoir, for
the average displacement of balls from the reservoir origin,
and for the displacement of the rightmost ball. We also
present analytical estimates and numerical simulations,
which are in good agreement with experimental data. The
results suggest that, as far as the time dependence is con-
cerned, theAt law is essentially independent of the nature of
the interactions between the substrate and the spreading sub-
stance, long-range interactions between the particles them-
selves, as well as of the geometry and of the size of spread-
ing particles. The prefactors in the square-root law, of
course, do depend on the system’s parameters and all details
of the microscopic interactions.

The organization of the paper is as follows. In the Secs.
II A and II B we describe the experimental setup and numeri-
cal algorithm, respectively. In Sec. III we present simple
analytical results for our model: basic equations in Sec.
III A; results for the flux of balls from the reservoir and
averaged displacement of spreading balls in Sec. III B; re-
sults for the displacement of the rightmost ball, which deter-
mines the size of the spreading layer, in Sec. III C; and sepa-
rate results for the steady regime that starts after the first ball
falls out of the rack in Sec. III D. In Sec. IV we present
experimental and numerical results, which are briefly sum-
marized in Sec. V.

II. EXPERIMENTAL SETUP
AND NUMERICAL PROCEDURE

A. Experiment

A schematic diagram of the experimental setup appears in
Fig. 1. A corrugated~notched! horizontal rack is confined
inside a rectangular tube, which prevents balls from passing
one another or jumping off the track. A vertical stack is
placed at the left end of the rack~at the origin! and metallic
balls ~balls! are fed through this stack, maintaining unit con-
centration of ‘‘particles’’ at the origin. The balls are allowed
to move to the right of the origin only. The entire system is
driven with motors placed on each end of the rack. The fly-
wheel on each motor is eccentric to provide ‘‘chaotic’’ os-
cillations, which are experimentally shown~see below! to
give rise to diffusional motion of the balls. A particular num-
ber of ballsn (n54 or 8) is placed in the vertical stack and
then the oscillations are started. The time for the balls to
leave the stack is measured and recorded along with the dis-
placement of the horizontal balls. After this,n more balls are
added to the stack and the procedure is repeated with the first
n balls left at their respective place on the horizontal rack.
The process is repeated until the rightmost ball reaches the
right end of the rack. Results presented are averaged with
respect to four independent trials. In a separate set of experi-
ments the number of balls that emerge from the vertical stack
as a function of time after the rightmost ball reached the right
end of the rack and escape from the rack was measured. This
is the spreading rate for a ‘‘full’’ horizontal rack. We used
two kinds of balls: magnetic and nonmagnetic.

FIG. 1. Sketch of experimental setup.

FIG. 2. Mean-square~diamonds! and squared
mean~triangles! diplacement of a single ball vs
time, averaged over 30 trials.
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The experiment was designed to mimic the spreading of
liquids: the vertical stack imitates a liquid drop, which acts
as a reservoir providing particles for the precursor and keeps
constant concentration at the drop-precursor boundary; the
horizontal rack mimics a solid surface. Since the gravita-
tional energy of balls on the rack is proportional to the
height, the shape of the surface of the rack emulates the
profile of the potential of liquid-substrate interactions with
local potential minima, which prevent particles from long-
range ~on length scales larger than the mean distance be-
tween two neighboring particles! ballistic or rolling motion.
Oscillations of the horizontal rack mimic thermal excitations
of the surface of a solid substrate and generate random jumps
of balls along the rack. The numbern determines the
gravitation-induced pressure in the vertical stack. Two sets
of experiments, withn54 and 8, were carried out in order to
make sure that in a given range ofn values the pressure is
not important; see Sec. IV. The total number of balls on the
horizontal stackM (t) is an analog of the precursor mass and
the displacement of the rightmost ball is an analog of the
precursor radiusR(t). The magnetic mutual ball to ball at-
traction serves to mimic the particle-particle attraction in a
precursor film and in a liquid drop.

To test the assumption that the eccentric oscillations gen-
erate diffusive motion of a single ball, Fig. 2 shows the
mean-square displacement and the squared mean displace-
ment of a single ball initially placed on the horizontal rack
halfway between the origin and rightmost end. The observed
linear dependence of the mean-square displacement on time
agrees with the well-known result of conventional single-
particle random-walk theory. The observed rms dispersion
from the mean is also in approximate agreement with the
prediction of simple estimates presented in the Appendix.
However, the absolute values of dispersion is approximately
1.5 times greater than the theoretical value. These experi-
mental results indicate that the jumps of a single ball are, to
a good approximation, random and independent events
caused by the vibrational driving of the system.

B. Numerical simulations

In numerical simulations, we modeled random jumps of
particles on a 1D lattice with unit steps. For each time, each

particle, except the particle in the site 0, chooses randomly a
direction: to the right or to the left with equal probabilities. If
the corresponding neighboring site is occupied, the move is
rejected and the particle stays at the original position; if the
site is vacant, the particle jumps to it. The origin~site 0! is
always occupied; a new particle is automatically added to the
site 1 when it becomes vacant. To simulate an analog of the
magnetic interaction in the simplest manner, the jump rates
of particles that had a nearest neighbor from one side to the
vacant site on the other side was reduced by the factor
2(12p), wherep determines the ‘‘strength of the interac-
tion,’’ p50.5 corresponds to the absence of the interactions,
and p51 corresponds to infinitely strong attraction. At an
initial time, two particles are placed into the system: the first
particle at i50 and the second particle ati51. The mean
displacement of balls was measured, as was the number of
balls, as a function of time up to 100 active balls on the rack.
Results were averaged with respect to 40 independent trials
for eachp50.5,0.6,0.7,0.8.

III. SIMPLE ANALYTICAL ESTIMATES

A. Diffusion equation and boundary conditions

In order to obtain a simple analytical estimate for the
dynamics of the processes we neglect mutual magnetic at-
traction ~this is the same as neglecting surface tension for
microscopic spreading phenomena! and decouple many par-
ticle probabilities. This leads to the following equations for
mean concentrations in a 1D lattice with unit step~horizontal
rack!:

]Cv~ i ,t !

]t
5

v

2
$Cv~ i11,t !@12Cv~ i ,t !#

1Cv~ i21,t !@12Cv~ i ,t !#

2Cv~ i ,t !@12Cv~ i21,t !#

2Cv~ i ,t !@12Cv~ i11,t !#%, ~2!

wherev is frequency of jumps, which is connected to the
diffusion coefficientD5v l 2/2, with l the jump length,

FIG. 3. Experimental dependence of the mean number of balls on a square root of time. Triangles, nonmagnetic balls,n58; squares,
nonmagnetic balls,n54; diamonds, magnetic balls; solid lines, linear regression.
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Cv( i ,t) is concentration of vacancies~empty slots on the
horizontal rack! at the slot i at time t, and
Cv( i ,t)512Cb( i ,t), with Cb( i ,t) is the probability to find a
ball ~ball! at slot i at timet. The first term on the right-hand
side of Eq.~2! determines the rate of jumps of vacancies
from the site i11 to the sitei . It is proportional to the
concentration of vacancies at the sitei11 multiplied by the
concentrations of particles at the sitei since only vacancy-
particle exchanges are allowed. The other terms determine
the rate of jumpsi21→ i , i→ i21, andi→ i21 in a similar
way.

In the approximate Eq.~2!, nonlinear terms cancel since
the forbidden particle-particle and vacancy-vacancy ex-
changes do not alter the local mean concentrations. Wheni
and t are large,i @1 andvt@1, it leads to the diffusion
equation

]Cv~ i ,t !

]t
5

v

2
DCv~ i ,t !, ~3!

whereD is Laplace operator with respect to the variablei . At
t50 andi.0, there is no ‘‘liquid’’ on the solid surface~no
balls on the horizontal rack!. Therefore, the initial concentra-
tion of vacancies is equal to unity

Cv~ i ,t !u t5051; ~4!

all sites are empty. Wheni is large the concentration of
vacancies is equal to unity because the balls have not had
enough time to reach this area,

lim
i→`

Cv~ i ,t !51. ~5!

There are no vacancies at the boundaryi50 because the
reservoir of balls places a ball in the vacancy instantly,

Cv~ i ,t !u i5050. ~6!

Note that, in spite of the fact that Eq.~3! apparently does not
reflect the excluded volume interaction, the boundary condi-
tion Eq. ~4! states that the ball from the vertical stack can
move down to the horizontal rack if and only if the vacancy

comes to the pointi50. When the ball falls down from the
stack it eliminates the vacancy att50. The relaxation time
for the vacancy concentration in the horizontal stack is de-
termined by the diffusion of a vacancy through the array of
balls in the horizontal stack: from the right end to the left
end. Since the number of balls and the length of the array
grow, the relaxation time increases, which slows down the
dynamics and leads to the dependence presented by Eq.~1!
instead of linear growth.

B. Flux from reservoir, number of balls,
and averaged displacement

The solution of Eq.~3! in one dimension with the bound-
ary conditions~4! and ~5!

Cn~ i ,t !512erfcS i

2ADt D ~7!

leads to the result for the fluxP(t) at i50,

P~ t !5
v

2

]Cv~ i ,t !

] i U
i50

5A v

2pt
. ~8!

The number of particles on the rack is equal to

M ~ t !5E
0

t

P~t!dt5A2vt

p
. ~9!

Writing down the equation similar to Eq.~2! for particles
concentration, multiplying both sides of this equation byi ,
integrating from 0 to infinity, and taking into account the
boundary conditions~6! and ~5!, we obtain, for the mean
total displacement of all balls in the horizontal rack,
K(t)5*0

`iCb( i ,t)di, measured in the jump length unitsl ,

dK~ t !

dt
5
1

2
v. ~10!

Integrating Eq.~10! and taking into account the normaliza-
tion

FIG. 4. Mean displacement of the rightmost ball vs the square root of time. Triangles, experimental data for nonmagnetic balls,n58;
squares, experimental data for nonmagnetic balls,n54; diamonds, experimental data for magnetic balls; solid lines, linear regression.
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M ~ t !5E
0

`

Cb~ i ,t !di,

we obtain the averaged~over all balls! displacement for the
balls in the horizontal rackr (t),

r ~ t ![
K~ t !

M ~ t !
5
1

4
A2pvt. ~11!

The straightforward extension of the results~9! and ~11! for
the corresponding 2D system in the large-t limit leads to

P~ t !u2D5t
2pav

2

]Cv~ i ,t !

]r U
i50

}
pv

2 lnSDta2 D
~12!

and

M ~ t !u2D}r ~ t !u2D}
pvt

2 lnSDta2 D
. ~13!

C. Displacement of the rightmost ball

One can show@22# that, apart from logarithmic correc-
tions, which can occur in the long-time regime of spreading,
the displacement of the rightmost ball on the horizontal rack
@the length of the precursorR(t)# is proportional to the av-
erage displacementR(t)}r (t), which leads to Eq.~1!. Here
we present a simple estimate forR(t). The distribution of the
displacement of the rightmost particle, for the ensemble of
spreading hard-core particles, can be bounded by the maxi-
mum displacement of independent diffusing particles. The
latter displacement has the distribution

P~R!5c~R,t !expS 2
1

aE0
R

ln@12c~r ,t !#dr D , ~14!

wherec(R,t)512Cn( i ,t), Cn( i ,t) being determined from
Eq. ~7!. The first multiplier on the right-hand side of Eq.~11!
is the probability to have a particular displacementR for a
ball and the second term is a limiting continuum form for a
probability to have smaller displacement for other balls. Av-
eragingR with respect to the distribution Eq.~14! by means
of the steepest decent method in the large-t limit, we obtain

^R&5A2DtAlnS 16 ~Dt !3

pa2 D .
D. Steady regime

The regime of spreading changes after the first ball falls
off the horizontal rack. The length of the array of balls does
not grow anymore and the concentration of balls is deter-
mined by the steady-state solution of Eq.~3! with a new
boundary condition on the right-hand side of the horizontal
rack

Cv~ i ,t !u i5L51, ~15!

whereL is the total number of slots on the horizontal rack.
This boundary condition states that there are no balls out of
the rack with the coordinatesi.K. The solution of the
steady state Eq.~3! leads to the constant flux of vacancies to
the origin, which in turn leads to

M1~ t !5
v

2L
~ t2t0!, ~16!

whereM1 is the number of balls that fall out of the rack and
t0 is the time when the first ball falls.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

Figures 3 and 4 show the experimental results for the
number of balls in the horizontal rack and the averaged dis-
placement of the rightmost ball versus the square root of
time for magnetic and nonmagnetic balls forn54,8 and

FIG. 5. Time vs the number of balls that emerged from the vertical stack. Squares, experimental data for nonmagnetic balls; solid line,
theoretical dependence predicted by Eq.~9! for t,t0; dashed line, theoretical curve, predicted by Eq.~16!.
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t,t0. Figure 5 shows the time for a given number of balls to
enter the horizontal rack from the stack. In this case the
experiment was not interrupted at timet5t0. Figure 6 pre-
sents the dependences of the mean-square displacement
along with the squared mean displacement of the rightmost
ball in the horizontal rack. Figures 7, 8, and 9 show the
dependences of the mean number of balls in the horizontal
rack, the mean displacement of balls on the horizontal rack,
and the mean displacement of the rightmost ball versus the
square root of time obtained in the numerical simulation for
different values of the ‘‘interaction parameter’’p, respec-
tively.

The pronounced straight lines that are presented in Figs.
3, 4, and 6–8 are in good qualitative agreement with Eqs.
~11!, ~9!, and ~1!. However, the fluctuations in the depen-
dence of the mean displacement on the square root of time

are larger than fluctuations for the dependence of the total
number of balls. The results forn54 and 8 are essentially
similar. It shows that the gravity-induced pressure in the res-
ervoir does not play a significant role, which corresponds to
the spreading of small droplets or vertical creep with rela-
tively small precursor length where the gravitational forces
are not important. In a test experiment with a larger number
of balls n>40, the large gravitational force pushed all balls
from the vertical stack after the beginning of vibrations,
overcoming the potential barriers produced by slots on the
horizontal rack, i.e., large gravitational forces changed the
nature of spreading.

The theoretical values for the slopes of the linear depen-
dences of the number of balls and of the mean displacement
of balls in the precursor that are determined by Eqs.~9! and
~11! for v51, A2/p'0.798 andA2p/4'0.6266, are in ex-
cellent agreement with the corresponding values determined
from the numerical experiment, 0.804 and 0.625. The mag-
netic interaction does not change the shape of the depen-
dences but decreases the numerical prefactors and increases
fluctuations. Introduction of the effective interaction in nu-
merical simulations leads to similar effects. The numerical
results for the dependences of the mean number of balls on
the horizontal rack and of the mean displacement versus
square root of time, presented in Figs. 7 and 8, exhibit a
slowing down when the interaction parameter increases from
0.5 to 0.8. The fluctuations in the mean-square displacement
also increase and the crossover period, which can be seen for
small times in Fig. 8, becomes larger.

It is also instructive to compare the results presented in
Fig. 2 for the moments of the displacement of the single ball
on the horizontal rack with the results for the moment of the
displacement of the rightmost ball of the array spreading
along the rack, presented in Fig. 6. For a single ball the
mean-square displacement is proportional to time, while the
squared mean displacement is much smaller and irregular. In
the limit of a large number of trialsK, it should tend to zero
as 1/AK. On the contrary, the experimentally measured

FIG. 6. Mean-square displacement~squares! and square of mean displacement~triangles! vs time forn58 and nonmagnetic balls.

FIG. 7. Numerical data. The mean number of balls on the hori-
zontal rackp grows from 0.5 to 0.8.
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mean-square displacement and squared mean displacement
for the rightmost ball in the array are equal within the error
of the experiment. This shows that, in spite of apparent scal-
ing, the similarities of these two processes are of essentially
different physical origin and behavior. The motion of a
single ball is a fluctuation-induced process with zero mean,
while the spreading is a driven diffusive process with small
fluctuations.

The initial parabolic dependence presented in Fig. 5 for
t,t0 agrees with Eq.~9!, while the linear dependence ob-
tained fort.t0 confirms Eq.~16!. The numerical prefactors
for these time dependences are not the subject of our present
work; thus actual values of the vibrational frequencies and
length scales are not important for our results. However, we
can suggest some rough estimates, which produce reasonable
numerical values. The effective experimental frequency of
jumps v'32 sec21 was roughly estimated from the data
presented in Fig. 5 for the timet.t0 ~the liner regime! with
the approximate values for the length of the rack'60 cm
and l'1 cm. It is in good agreement with the valuev'36
sec21, which was obtained by independent estimate from the
region t,t0 by means of Eq.~9!. The slope for the experi-
mental dependence of mean displacement versus the square
root of time is also in good agreement with the theoretical
estimate.

V. SUMMARY

We have calculated analytically, simulated numerically,
and measured experimentally the mass and the size of a wet-
ting layer for a simple mechanical system: metallic balls,
which spread along a periodically corrugated surface, which
mimics the wetting phenomena. The experimental results
and numerical data are in excellent agreement with the theo-
retical predictions concerning the dependences that deter-
mine the dynamics of spreading of a lattice gas~balls! in our
mechanical model@23#. These agree with Eq.~1!, which em-
pirically describes the dynamics of precursors in the spread-

ing of actual liquid drops. The mechanical model may thus
reflect the important features of this phenomenon, which lead
to the universal spreading law Eq.~1!. Analysis of the ex-
perimental results, simple analytical estimates, and numeri-
cal simulations provides an additional argument that the pre-
cursor kinetics is controlled by the diffusion of vacancies
from the precursor’s boundary to the liquid drop@1–3,6,22#.
A theoretical model that directly explores the consequences
of these ideas for a model of microscopic wetting is pre-
sented in a subsequent paper@22#, which substantially ex-
tends the ideas of@24#.
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APPENDIX: DISPERSION
OF MEAN-SQUARED DISPLACEMENT

Let us consider the dispersion for the average overK
realizations squared displacement of a random walk contain-
ing N steps. What we measure is the mean-square displace-
ment for an individual random walk

^Ri
2~N!&5K S (

j51

N

si D 2L 5(
j51

N

^sj
2&,

wheresj is the step numberj . Ri
2(N) is the squared displace-

ment of the random walk numberi , Ri
2(N)5(( j51

N si)
2; the

average of the squared displacement is

FIG. 8. Numerical data. The mean displacement averaged for all
balls on the horizontal stackp grows from 0.5 to 0.8.

FIG. 9. Numerical data. The mean displacement of the rightmost
ball along the horizontal stackp grows from 0.5 to 0.8.
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(
j51

K

Ri
2~N!

K
5

(
j51

K S (
j51

N

si D 2
K

;

D andD2 are defined as follows:

D5A(
i51

K S Ri
2~N!2

(
i51

K

Ri
2~N!

K
D 2

Y K;

and denotingRi
2(N)5Xi ,

D25(
i51

K S Xi2

(
i51

K

Xi

K
D 2

Y K5 (
i51

K

~Xi !
2

2(
i51

K S (
i51

K

Xi

K
D 2

Y K.

All Ri(N) are independent random variables with zero mean
and second moment equal toNs2. The Gaussian random
variablesRi

2(N) have a mean equal toNs2 and the second
central moment equal to 3N2s4. For K530, A30}5.4772,
1/A3050.182 57, andD5A3/A30Ns250.740 08Ns2.
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